Blog

Método de reducción ejercicios resueltos paso por paso

Método de reducción ejercicios resueltos paso por paso
Método de reducción: Consiste en eliminar una de las incógnitas mediante una combinación lineal (multiplicando las ecuaciones por un número para que la incógnita a eliminar tenga el mismo coeficiente en ambas ecuaciones) de las ecuaciones, obteniendo una ecuación con una sola incógnita. Luego se repite con el otro desconocido.

Método de reducción

El último de los métodos analíticos que aprenderemos a utilizar en esta Unidad para resolver sistemas lineales de dos ecuaciones con dos incógnitas es el método de reducción. En resumen, consiste en multiplicar una o ambas ecuaciones por algún número(s) para obtener un sistema equivalente al inicial en el que los coeficientes de x o y son iguales pero de signo opuesto. Luego se suman las ecuaciones del sistema para obtener una única ecuación de primer grado con una desconocida. Una vez resuelta, hay dos opciones para encontrar la otra desconocida: una es aplicar de nuevo el mismo método (sería la opción más pura de reducción), la otra es sustituir la desconocida encontrada en una de las ecuaciones del sistema y borrar la otra.

Método de reducción ejercicios resueltos paso por paso

Las ecuaciones se multiplican por los números correspondientes de manera que, en una de las incógnitas, los coeficientes son iguales pero de signo opuesto,

  • Se suman las dos ecuaciones del nuevo sistema, equivalentes a la anterior.
  • La ecuación lineal de una incógnita resultante se resuelve.
  • Para este paso hay dos opciones:
  • El proceso se repite con el otro desconocido.
  • Reemplaza la incógnita ya encontrada en una de las ecuaciones del sistema y resuelve la otra.
Entrada Relacionada:   Adivinanzas matemáticas

De nuevo queda claro que todas las aclaraciones hechas en la sección del método de sustitución sobre la discusión del sistema para saber si tiene solución o no y cuántas (si las tiene), son igualmente válidas en este método.

Ejemplo de método de reducción

Los pasos a seguir son los siguientes:

Primero, tenemos que preparar las dos ecuaciones, si es necesario, multiplicándolas por los números apropiados.

En este caso, queremos reducir la "y" de nuestro sistema, por lo que multiplicamos la primera ecuación por 2.

2(x+y=7)
5x-2y=-7

Así, el sistema se queda:

Si nos fijamos, sumando las ecuaciones la y nos desaparece.

Y nos quedaría:

7x=7
x=7/7=1
x=1

Finalmente, sustituimos el valor que hemos calculado despejando la otra incógnita en una de las ecuaciones iniciales.

y= 7-x

y=7-1=6

y=6

La solución de nuestro sistema es x=1 e y =6.

Entradas Relacionadas